



## **PH Series**

# CONSTANT TEMPERATURE WATER BATH

### Introduction

Constant Temperature Water Bath is a specialized laboratory equipment used to maintain a stable and constant temperature for biological samples. It is designed to provide a high level of accuracy and precision in various applications such as cell culture, microbiology, and other biological experiments. It is electrically powered and has a digital display for precise control of the temperature and other settings. It is mainly suitable for the distillation, drying, concentration and warm soaking of various chemical samples and biological products in laboratories and laboratories of major universities, scientific research enterprises and institutions.

#### **Features**

- The inner tank is welded with high-quality stainless steel plates.
- The maximum hole diameter of the cover plate is 12.5cm. Each hole has four circles and one cover.
- The outer shell is made of cold plate spray plastic, which improves the anti-corrosion ability of the whole machine.
- The temperature control adopts digital display control, which improves the constant temperature accuracy and makes the temperature display intuitive and clear.

### **Technical Parameter**

| Model | Number of holes      | Water tank volume | Heating power |
|-------|----------------------|-------------------|---------------|
| PH-1  | 1 hole               | 160*160*120mm     | 300W          |
| PH-2  | 2 holes              | 310*160*120mm     | 600W          |
| PH-4  | 4 holes (double row) | 305*305*120mm     | 800W          |
| PH-6  | 6 holes (double row) | 465*310*120mm     | 1200W         |
| PH-8  | 8 holes (double row) | 640*310*120mm     | 1500W         |
| PH-4  | 4 holes (single row) | 610*160*120mm     | 1000W         |
| PH-6  | 6 holes (single row) | 910*160*120mm     | 1200W         |
| PH-8  | 8 holes (single row) | 1200*160*120mm    | 1800W         |

Constant temperature range: room temperature RT+5  $\sim$  100 °C Temperature fluctuation:  $\pm$  0.5 °C